47c8e9c89f0fea96066d87cd5152834ab4a04132,openTSNE/initialization.py,,pca,#,38
Before Change
embedding = pca_.fit_transform(X)
// The PCA embedding may have high variance, which leads to poor convergence
normalization = np.std(embedding[:, 0])
normalization /= 0.0001
embedding /= normalization
timer.__exit__()
After Change
n_components=n_components, svd_solver=svd_solver, random_state=random_state
)
embedding = pca_.fit_transform(X)
rescale(embedding, inplace=True)
timer.__exit__()
return np.ascontiguousarray(embedding)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: pavlin-policar/openTSNE
Commit Name: 47c8e9c89f0fea96066d87cd5152834ab4a04132
Time: 2020-05-04
Author: pavlin.g.p@gmail.com
File Name: openTSNE/initialization.py
Class Name:
Method Name: pca
Project Name: pavlin-policar/openTSNE
Commit Name: 47c8e9c89f0fea96066d87cd5152834ab4a04132
Time: 2020-05-04
Author: pavlin.g.p@gmail.com
File Name: openTSNE/initialization.py
Class Name:
Method Name: spectral
Project Name: broadinstitute/keras-rcnn
Commit Name: 4bdbe5fd27ceeb14e4abf4244cc1442de93bf8e2
Time: 2018-03-05
Author: brandenkmurray@gmail.com
File Name: keras_rcnn/preprocessing/_object_detection.py
Class Name: DictionaryIterator
Method Name: _get_batches_of_transformed_samples