8184b9fdf51e3f75835fe1f2d56c294d16686241,examples/federated_learning_with_encryption.py,,,#,162

Before Change


    // Predict
    for (i, c) in enumerate(clients):
        print("Train", mean_square_error(c.predict(X[i]), y[i]))
        print("Test", mean_square_error(c.predict(X_test), y_test))

    // Each client sends its own model to the next one, in a RING protocol,
    // aggregating them all. The last client sends the aggregate model to the server

After Change


    //     print(mean_square_error(y_pred, y_test))

    // The federated learning with gradient from the google paper
    n_iter = 5
    for i in range(n_iter):

        // Compute gradients, encrypt and aggregate
        encrypt_aggr = clients[0].encrypted_gradient(sum_to=None)
        encrypt_aggr = clients[1].encrypted_gradient(sum_to=encrypt_aggr)
        encrypt_aggr = clients[2].encrypted_gradient(sum_to=encrypt_aggr)

        // Send aggregate to server, which decrypts
        aggr = server.decrypt_aggregate(encrypt_aggr, n_clients)

        // Take gradient steps
        clients[0].gradient_step(aggr)
        clients[1].gradient_step(aggr)
        clients[2].gradient_step(aggr)

    for (i, c) in enumerate(clients):
        y_pred = c.predict(c.X)
        print(mean_square_error(y_pred, c.y))
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: data61/python-paillier
Commit Name: 8184b9fdf51e3f75835fe1f2d56c294d16686241
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/federated_learning_with_encryption.py
Class Name:
Method Name:


Project Name: oddt/oddt
Commit Name: f8175e0221bbf31ffc8c10ee809b7ee2e118362d
Time: 2018-02-08
Author: maciek@wojcikowski.pl
File Name: oddt/scoring/functions/NNScore.py
Class Name: nnscore
Method Name: train


Project Name: zo7/deconvfaces
Commit Name: 41ef0bf4ece3daf13a02b14c79eb7ddebb42bc0c
Time: 2016-09-04
Author: zo7.flynn@gmail.com
File Name: facegen/generate.py
Class Name:
Method Name: generate_from_yaml