-1)) // append a list of property-specific scores, skip feedback
if len(sims) == 0: // no content properties for the item
sims = 0.5 * np.ones(len(self.properties) - 1)
return sims
return np.mean(sims, axis=0) // return a list of averages of property-specific scores
After Change
if prop != "feedback":
sims_prop = []
for past_item in items_liked_by_user:
sims_prop.append(self.relatedness_score(prop, past_item, item))