16d7600b3235b65a29d975ae728395a808562f37,librosa/core/constantq.py,,cqt,#,18
Before Change
n_fft = basis.shape[1]
// FFT and retain only the non-negative frequencies
fft_basis = np.fft.fft(basis, n=n_fft, axis=1)[:, :(n_fft / 2)+1]
// normalize as in Parseval"s relation, and sparsify the basis
fft_basis = util.sparsify_rows(fft_basis / n_fft, quantile=sparsity)
// Compute a dynamic hop based on n_fft
my_cqt = __variable_hop_response(y, n_fft,
hop_length,
After Change
res_type = "sinc_fastest"
// Now do the recursive bit
fft_basis , n_fft, min_filter_length = __fft_filters(sr, fmin_t,
bins_per_octave,
tuning,
resolution,
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: librosa/librosa
Commit Name: 16d7600b3235b65a29d975ae728395a808562f37
Time: 2015-01-26
Author: brian.mcfee@nyu.edu
File Name: librosa/core/constantq.py
Class Name:
Method Name: cqt
Project Name: neurodsp-tools/neurodsp
Commit Name: 20047f4faebee3a9f21596bdd24a12df575dcb7a
Time: 2019-08-18
Author: tdonoghue@ucsd.edu
File Name: neurodsp/sim/aperiodic.py
Class Name:
Method Name: sim_powerlaw
Project Name: librosa/librosa
Commit Name: 84d7770cb65a52231b64f6822d3adb889b35ffa6
Time: 2014-01-15
Author: brm2132@columbia.edu
File Name: librosa/core.py
Class Name:
Method Name: stft