16d7600b3235b65a29d975ae728395a808562f37,librosa/core/constantq.py,,cqt,#,18

Before Change


        n_fft = basis.shape[1]

        // FFT and retain only the non-negative frequencies
        fft_basis = np.fft.fft(basis, n=n_fft, axis=1)[:, :(n_fft / 2)+1]

        // normalize as in Parseval"s relation, and sparsify the basis
        fft_basis = util.sparsify_rows(fft_basis / n_fft, quantile=sparsity)

        // Compute a dynamic hop based on n_fft
        my_cqt = __variable_hop_response(y, n_fft,
                                         hop_length,

After Change


        res_type = "sinc_fastest"

    // Now do the recursive bit
    fft_basis, n_fft, min_filter_length = __fft_filters(sr, fmin_t,
                                                        bins_per_octave,
                                                        tuning,
                                                        resolution,
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: librosa/librosa
Commit Name: 16d7600b3235b65a29d975ae728395a808562f37
Time: 2015-01-26
Author: brian.mcfee@nyu.edu
File Name: librosa/core/constantq.py
Class Name:
Method Name: cqt


Project Name: neurodsp-tools/neurodsp
Commit Name: 20047f4faebee3a9f21596bdd24a12df575dcb7a
Time: 2019-08-18
Author: tdonoghue@ucsd.edu
File Name: neurodsp/sim/aperiodic.py
Class Name:
Method Name: sim_powerlaw


Project Name: librosa/librosa
Commit Name: 84d7770cb65a52231b64f6822d3adb889b35ffa6
Time: 2014-01-15
Author: brm2132@columbia.edu
File Name: librosa/core.py
Class Name:
Method Name: stft