16f50016cabab22efde6f183c89efe0a11b0c683,src/RMDL_Image.py,,image_classifciation,#,22

Before Change


def image_classifciation(X_train, y_train, X_test, y_test, batch_size, shape, sparse_categorical, Random_Deep,
                            n_epochs):
    y_proba = []
    model = []
    score = []
    history_ = []
    number_of_classes = np.max(y_train)+1
    //X_train, y_train, X_test, y_test, shape, number_of_classes = Image_Data_load.load(Data_Image)
    i =0
    while i < Random_Deep[0]:
        try:
            print("MNIST DNN ", i, "\n")
            model.append(Sequential())
            model[i], model_tmp = BuildModel.buildModel_DNN_image(shape, number_of_classes, 0)
            filepath = "weights\weights_DNN_" + str(i) + ".hdf5"
            checkpoint = ModelCheckpoint(filepath, monitor="val_acc", verbose=1, save_best_only=True,
                                         mode="max")
            callbacks_list = [checkpoint]

            history = model[i].fit(X_train, y_train, validation_data=(X_test, y_test),
                                   epochs=n_epochs[0], batch_size=batch_size, callbacks=callbacks_list,
                                   verbose=2)
            history_.append(history)
            model_tmp.load_weights(filepath)

            if sparse_categorical == 0:
                model_tmp.compile(loss="sparse_categorical_crossentropy",
                                  optimizer="adam",
                                  metrics=["accuracy"])
            else:
                model_tmp.compile(loss="categorical_crossentropy",
                                  optimizer="adam",
                                  metrics=["accuracy"])

            y_pr = model_tmp.predict_classes(X_test, batch_size=batch_size)
            y_proba.append(np.array(y_pr))
            score.append(accuracy_score(y_test, y_pr))
            i = i + 1
        except:
            print("Error in model ", i, "   try to re-generate an other model")

    i =0
    while i < Random_Deep[1]:
        try:
            print("RNN ", i, "\n")
            model.append(Sequential())
            model[i], model_tmp = BuildModel.Image_model_RNN(number_of_classes, shape)

            filepath = "weights\weights_RNN_" + str(i) + ".hdf5"
            checkpoint = ModelCheckpoint(filepath, monitor="val_acc", verbose=1, save_best_only=True,

After Change


        y_proba.append(np.array(y_pr))
        score.append(accuracy_score(y_test, y_pr))
        i = i+1
        del model_tmp
        del model_CNN
        gc.collect()

Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: kk7nc/RMDL
Commit Name: 16f50016cabab22efde6f183c89efe0a11b0c683
Time: 2018-03-07
Author: kk7nc@virginia.edu
File Name: src/RMDL_Image.py
Class Name:
Method Name: image_classifciation


Project Name: dirty-cat/dirty_cat
Commit Name: 6d27fa90fd962caf3d61c8e20550694818491096
Time: 2018-11-16
Author: gael.varoquaux@normalesup.org
File Name: dirty_cat/similarity_encoder.py
Class Name:
Method Name: ngram_similarity


Project Name: SheffieldML/GPy
Commit Name: 0abb9b835ffeb020410bdf9a1e0532139ffa5cfc
Time: 2016-08-16
Author: ibinbei@gmail.com
File Name: GPy/kern/src/add.py
Class Name: Add
Method Name: __init__