f4beaac559e00a3676d942dc7e8fea69efc01cfe,catalyst/metrics/ndcg.py,,dcg,#,9
Before Change
torch.arange(true_sorted_by_preds.shape[1], dtype=torch.float)
+ 2.0
)
discounted_gains = (gains * discounts)[:, :k]
elif gain_function == "rank":
discounts = torch.tensor(1) / torch.log2(
After Change
Raises:
ValueError: gain function can be either `pow_rank` or `rank`
targets_sort_by_outputs = process_recsys_components(outputs, targets)
target_device = targets_sort_by_outputs.device
if gain_function == "exp_rank":
gain_function = lambda x: torch.pow(2, x) - 1
gains = gain_function(targets_sort_by_outputs)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: Scitator/catalyst
Commit Name: f4beaac559e00a3676d942dc7e8fea69efc01cfe
Time: 2020-11-30
Author: raveforlive@gmail.com
File Name: catalyst/metrics/ndcg.py
Class Name:
Method Name: dcg
Project Name: Scitator/catalyst
Commit Name: f4beaac559e00a3676d942dc7e8fea69efc01cfe
Time: 2020-11-30
Author: raveforlive@gmail.com
File Name: catalyst/metrics/hitrate.py
Class Name:
Method Name: hitrate
Project Name: Scitator/catalyst
Commit Name: f4beaac559e00a3676d942dc7e8fea69efc01cfe
Time: 2020-11-30
Author: raveforlive@gmail.com
File Name: catalyst/metrics/avg_precision.py
Class Name:
Method Name: avg_precision