87a1cf1a6a2f927995b534149caf1287e234a775,predict.py,,main,#,34
Before Change
entries = []
count = 0
for i, data_pre in enumerate(dataset):
entry = {}
data = [torch.unsqueeze(d, 0) for d in data_pre] // make batch of size 1
signal = data[0]
target = data[1] if (len(data) > 1) else None
prediction = model.predict(signal)
After Change
entries = []
count = 0
for i, data_pre in enumerate(dataset):
info_data = dataset.get_information(i)
entry = {"information": info_data} if isinstance(info_data, str) else info_data
data = [torch.unsqueeze(d, 0) for d in data_pre] // make batch of size 1
signal = data[0]
target = data[1] if (len(data) > 1) else None
prediction = model.predict(signal)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: AllenCellModeling/pytorch_fnet
Commit Name: 87a1cf1a6a2f927995b534149caf1287e234a775
Time: 2018-01-25
Author: chek.o@outlook.com
File Name: predict.py
Class Name:
Method Name: main
Project Name: ericmjl/pyjanitor
Commit Name: 516b77610d058cfe3a6f379e8ff9753065d48707
Time: 2020-08-09
Author: samueloranyeli@gmail.com
File Name: janitor/functions.py
Class Name:
Method Name: groupby_agg
Project Name: has2k1/plotnine
Commit Name: 035083f62466d569f2fbc576c887cf770bc5b057
Time: 2019-09-24
Author: has2k1@gmail.com
File Name: plotnine/stats/stat_density.py
Class Name:
Method Name: compute_density