94472724eedd3382396d435fe2810422f472967e,tests/squeezenet.py,,,#,11
Before Change
import torch.nn as nn
from torch.autograd import Variable
sys.path.append("../pytorch2keras")
from converter import pytorch_to_keras
// The code from torchvision
import math
After Change
m.training = False
input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
input_var = Variable(torch.FloatTensor(input_np))
output = model(input_var)
k_model = pytorch_to_keras(model, input_var, (3, 224, 224,), verbose=True)
pytorch_output = output.data.numpy()
keras_output = k_model.predict(input_np)
error = np.max(pytorch_output - keras_output)
print(error)
if max_error < error:
max_error = error
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: nerox8664/pytorch2keras
Commit Name: 94472724eedd3382396d435fe2810422f472967e
Time: 2018-05-30
Author: nerox8664@gmail.com
File Name: tests/squeezenet.py
Class Name:
Method Name:
Project Name: nerox8664/pytorch2keras
Commit Name: 94472724eedd3382396d435fe2810422f472967e
Time: 2018-05-30
Author: nerox8664@gmail.com
File Name: tests/embedding.py
Class Name:
Method Name:
Project Name: PacktPublishing/Deep-Reinforcement-Learning-Hands-On
Commit Name: f1fe81e01edd0fa3163bd1a5a8db09ead0cd6a22
Time: 2018-02-20
Author: max.lapan@gmail.com
File Name: ch16/01_cartpole_es.py
Class Name:
Method Name: train_step