19fbae4ea6092bfc69e4f828febbd15f72365311,cesium/features/cadence_features.py,,delta_t_hist,#,22

Before Change


def delta_t_hist(t, nbins=50):
    Build histogram of all possible delta_t"s without storing every value
    hist = np.zeros(nbins, dtype="int")
    bins = np.linspace(0, max(t) - min(t), nbins + 1)
    for i in range(len(t)):
        hist += np.histogram(t[i] - t[:i], bins=bins)[0]
        hist += np.histogram(t[i + 1:] - t[i], bins=bins)[0]
    return hist / 2  // Double-counts since we loop over every pair twice

After Change


    and then aggregate the result to have `nbins` total values.
    
    f, x = np.histogram(t, bins=conv_oversample * nbins)
    g = np.convolve(f, f[::-1])[len(f) - 1:]  // Discard negative domain
    g[0] -= len(t)  // First bin is double-counted because of i=j terms
    hist = g.reshape((-1, conv_oversample)).sum(axis=1)  // Combine bins
    return hist
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: cesium-ml/cesium
Commit Name: 19fbae4ea6092bfc69e4f828febbd15f72365311
Time: 2016-11-10
Author: brettnaul@gmail.com
File Name: cesium/features/cadence_features.py
Class Name:
Method Name: delta_t_hist


Project Name: librosa/librosa
Commit Name: b7c2f6e9ccd65a53d8ae9aa0d3ee287ce9c93019
Time: 2014-02-07
Author: brm2132@columbia.edu
File Name: librosa/feature.py
Class Name:
Method Name: estimate_tuning


Project Name: scikit-video/scikit-video
Commit Name: 14a7c84fa56c32eb7f4bbe057ce118cbff6ce8fd
Time: 2016-11-16
Author: tgoodall@utexas.edu
File Name: skvideo/measure/scene.py
Class Name:
Method Name: _scenedet_intensity