8184b9fdf51e3f75835fe1f2d56c294d16686241,examples/federated_learning_with_encryption.py,,,#,162
Before Change
// Predict
for (i, c) in enumerate(clients):
print("Train", mean_square_error(c.predict(X[i]) , y[i]))
print("Test", mean_square_error(c.predict(X_test), y_test))
// Each client sends its own model to the next one, in a RING protocol,
After Change
// We need a baseline to understand how good is any future prediction
print("Compute a baseline: the mean of all training data")
for i in range(n_clients):
print("Baseline at test time:", mean_square_error(np.mean(y[i]), y_test))
// Instantiate Alice, Bob and Carol.
// Each client gets the public key at creation
clients = []
for i in range(n_clients):
clients.append(Client(names[i], X[i], y[i], server.pubkey))
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: data61/python-paillier
Commit Name: 8184b9fdf51e3f75835fe1f2d56c294d16686241
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/federated_learning_with_encryption.py
Class Name:
Method Name:
Project Name: data61/python-paillier
Commit Name: 0d033a90362960dc38787bc8c1b35fcda25d87ca
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/linear_regression_encrypted_data.py
Class Name: PaillierLinearRegression
Method Name: fit
Project Name: zo7/deconvfaces
Commit Name: 41ef0bf4ece3daf13a02b14c79eb7ddebb42bc0c
Time: 2016-09-04
Author: zo7.flynn@gmail.com
File Name: facegen/generate.py
Class Name:
Method Name: generate_from_yaml