dfe26d7233aaccb1d344ff9ba9995d722503b7e7,luminoth/models/ssd/ssd.py,SSD,_build,#SSD#,62
Before Change
// during training due to hard negative mining.
// We use class_targets to know which ones to ignore (they
// are marked as -1 if they are to be ignored)
if is_training:
with tf.name_scope("prepare_batch"):
predictions_filter = tf.greater_equal(class_targets, 0)
target_anchors = tf.boolean_mask(
all_anchors, predictions_filter)
bbox_offsets_targets = tf.boolean_mask(
bbox_offsets_targets, predictions_filter)
class_targets = tf.boolean_mask(
class_targets, predictions_filter)
class_scores = tf.boolean_mask(
class_scores, predictions_filter)
class_probabilities = tf.boolean_mask(
class_probabilities, predictions_filter)
bbox_offsets = tf.boolean_mask(
bbox_offsets, predictions_filter)
prediction_dict["target"] = {
"cls": class_targets,
"bbox_offsets": bbox_offsets_targets,
"anchors": target_anchors
After Change
tf.cast(tf.shape(image)[1:3], tf.float32)
)
prediction_dict["classification_prediction"] = proposals
if not is_training:
// Generate proposals for prediction
proposals = proposals_creator(
class_probabilities, bbox_offsets, all_anchors,
tf.cast(tf.shape(image)[1:3], tf.float32)
)
prediction_dict["classification_prediction"] = proposals
prediction_dict["cls_pred"] = class_scores
prediction_dict["loc_pred"] = bbox_offsets
if self._debug:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: tryolabs/luminoth
Commit Name: dfe26d7233aaccb1d344ff9ba9995d722503b7e7
Time: 2018-03-20
Author: joaquin.alori@gmail.com
File Name: luminoth/models/ssd/ssd.py
Class Name: SSD
Method Name: _build
Project Name: tensorflow/models
Commit Name: 44a5367a4e3797077f1f0de8eb893a483ab95644
Time: 2020-10-02
Author: allencwang@google.com
File Name: official/nlp/modeling/networks/xlnet_base.py
Class Name: XLNetBase
Method Name: call
Project Name: pymanopt/pymanopt
Commit Name: a1be7bf2f0926707e25b02570c17ba373878f768
Time: 2016-03-14
Author: jamiehntownsend@gmail.com
File Name: pymanopt/manifolds/psd.py
Class Name: PositiveDefinite
Method Name: exp