bc1c204015ee40fd536f68c73854b9c131ff4524,librosa/beat.py,,_beat_strength,#,163

Before Change


    D   = scipy.signal.lfilter([1.0, -1.0], [1.0, -0.99], D)

    ////// Normalize by the maximum onset strength
    return D / numpy.max(D)

def _recursive_beat_decomposition(onset, t_min=16, sigma=16):

    n           = len(onset)

After Change


    Z   = scipy.signal.lfilter([1.0, -1.0], [1.0, -0.99], Z)

    ////// Threshold at zero
    Z   = numpy.maximum(0.0, Z)

    ////// Normalize by the maximum onset strength
    Znorm = numpy.max(Z)
    if Znorm == 0:
        Znorm = 1.0
        pass
    return (Z / Znorm, D)

def _recursive_beat_decomposition(onset, t_min=16, sigma=16):

    n           = len(onset)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: librosa/librosa
Commit Name: bc1c204015ee40fd536f68c73854b9c131ff4524
Time: 2012-11-26
Author: brm2132@columbia.edu
File Name: librosa/beat.py
Class Name:
Method Name: _beat_strength


Project Name: librosa/librosa
Commit Name: 9519061db731fcab3a2b05f999f31785fea772c3
Time: 2017-07-27
Author: brian.mcfee@nyu.edu
File Name: librosa/display.py
Class Name:
Method Name: __coord_mel_hz


Project Name: hmmlearn/hmmlearn
Commit Name: db2d06991c37812b38330b32588c12c55fe021fd
Time: 2019-11-20
Author: anntzer.lee@gmail.com
File Name: lib/hmmlearn/stats.py
Class Name:
Method Name: _log_multivariate_normal_density_diag