f5122cdab53605b7b800c96d6700b791b8c9add8,librosa/segment.py,,lag_to_recurrence,#,287
Before Change
idx_slice = [slice(None)] * lag.ndim
for i in range(1, t):
idx_slice[axis] = i
lag[idx_slice] = np.roll(lag[idx_slice], i)
sub_slice = [slice(None)] * lag.ndim
sub_slice[1 - axis] = slice(t)
return np.ascontiguousarray(lag[sub_slice].T).T
def timelag_filter(function, pad=True, index=0):
"""Filtering in the time-lag domain.
After Change
sub_slice[1 - axis] = slice(t)
rec = rec[tuple(sub_slice)]
if sparse:
return rec.asformat(lag.format)
else:
return np.ascontiguousarray(rec.T).T
def timelag_filter(function, pad=True, index=0):
"""Filtering in the time-lag domain.
This is primarily useful for adapting image filters to operate on
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: librosa/librosa
Commit Name: f5122cdab53605b7b800c96d6700b791b8c9add8
Time: 2016-04-26
Author: brian.mcfee@nyu.edu
File Name: librosa/segment.py
Class Name:
Method Name: lag_to_recurrence
Project Name: librosa/librosa
Commit Name: 9b95e0f07b60b6a144893dcc506dfaf90db61c95
Time: 2020-05-18
Author: bmcfee@users.noreply.github.com
File Name: librosa/feature/utils.py
Class Name:
Method Name: stack_memory
Project Name: librosa/librosa
Commit Name: 01af2ab25c4d3f40191ce255750a3cd196ea8671
Time: 2015-02-17
Author: brian.mcfee@nyu.edu
File Name: librosa/segment.py
Class Name:
Method Name: structure_feature