f5122cdab53605b7b800c96d6700b791b8c9add8,librosa/segment.py,,lag_to_recurrence,#,287

Before Change


    idx_slice = [slice(None)] * lag.ndim
    for i in range(1, t):
        idx_slice[axis] = i
        lag[idx_slice] = np.roll(lag[idx_slice], i)

    sub_slice = [slice(None)] * lag.ndim
    sub_slice[1 - axis] = slice(t)
    return np.ascontiguousarray(lag[sub_slice].T).T


def timelag_filter(function, pad=True, index=0):
    """Filtering in the time-lag domain.

After Change


    sub_slice[1 - axis] = slice(t)
    rec = rec[tuple(sub_slice)]

    if sparse:
        return rec.asformat(lag.format)
    else:
        return np.ascontiguousarray(rec.T).T


def timelag_filter(function, pad=True, index=0):
    """Filtering in the time-lag domain.

    This is primarily useful for adapting image filters to operate on
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: librosa/librosa
Commit Name: f5122cdab53605b7b800c96d6700b791b8c9add8
Time: 2016-04-26
Author: brian.mcfee@nyu.edu
File Name: librosa/segment.py
Class Name:
Method Name: lag_to_recurrence


Project Name: librosa/librosa
Commit Name: 9b95e0f07b60b6a144893dcc506dfaf90db61c95
Time: 2020-05-18
Author: bmcfee@users.noreply.github.com
File Name: librosa/feature/utils.py
Class Name:
Method Name: stack_memory


Project Name: librosa/librosa
Commit Name: 01af2ab25c4d3f40191ce255750a3cd196ea8671
Time: 2015-02-17
Author: brian.mcfee@nyu.edu
File Name: librosa/segment.py
Class Name:
Method Name: structure_feature