ce5da48b8586d7cfdb392b8cad1988e6bfdd17d5,lexos/processors/analyze/similarity.py,,similarity_maker,#,8

Before Change


    // construct an array of names
    docs_np_name = np.asarray([temp_labels[i] for i in other_file_indexes])

    docs_np = np.column_stack((docs_np_name, docs_np_score))
    // sort by score
    sorted_docs_np = docs_np[docs_np[:, 1].argsort()]

    // extract the array of name and score out from sorted_docs_list
    docs_name = sorted_docs_np[:, 0]
    docs_score = np.round(sorted_docs_np[:, 1].astype(float), decimals=4)

    // pack the scores and names in data_frame
    score_name_data_frame = pd.DataFrame(docs_score.reshape(
        docs_score.size, 1), index=docs_name, columns=["Cosine similarity"])

After Change


    dist = 1 - cosine_similarity(final_matrix)

    // get an array of file index in filemanager.files
    num_row = len(dtm_data_frame.index)
    other_file_indexes = np.asarray([file_index for file_index in range(
        num_row)if file_index != comp_file_index])

    // construct an array of scores
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: WheatonCS/Lexos
Commit Name: ce5da48b8586d7cfdb392b8cad1988e6bfdd17d5
Time: 2017-08-03
Author: liu_xinru@wheatoncollege.edu
File Name: lexos/processors/analyze/similarity.py
Class Name:
Method Name: similarity_maker


Project Name: scikit-learn-contrib/categorical-encoding
Commit Name: b5034279b48ae96ffdd4714f96e0f62b0f4807fc
Time: 2018-10-26
Author: jcastaldo08@gmail.com
File Name: category_encoders/ordinal.py
Class Name: OrdinalEncoder
Method Name: ordinal_encoding


Project Name: WheatonCS/Lexos
Commit Name: 70fcd3094baba3139afcda727683d58c2928261f
Time: 2017-08-04
Author: liu_xinru@wheatoncollege.edu
File Name: lexos/processors/analyze/similarity.py
Class Name:
Method Name: similarity_maker