7a82079d10379287ba4e6e42e21b5b3ce8f541bc,spotlight/factorization/implicit.py,ImplicitFactorizationModel,fit,#ImplicitFactorizationModel#,102
Before Change
self._num_items,
len(batch_user),
random_state=self._random_state)
negative_var = Variable(
gpu(torch.from_numpy(negative_items))
)
negative_prediction = self._net(user_var, negative_var)
self._optimizer.zero_grad()
loss = loss_fnc(positive_prediction, negative_prediction)
After Change
if self._loss == "adaptive_hinge":
negative_prediction = [self._get_negative_prediction(user_var)
for _ in range(5) ]
else:
negative_prediction = self._get_negative_prediction(user_var)
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 5
Instances Project Name: maciejkula/spotlight
Commit Name: 7a82079d10379287ba4e6e42e21b5b3ce8f541bc
Time: 2017-07-13
Author: maciej.kula@gmail.com
File Name: spotlight/factorization/implicit.py
Class Name: ImplicitFactorizationModel
Method Name: fit
Project Name: sony/nnabla-examples
Commit Name: 7d8f3f66495979f1bbd27205d422d673991709f2
Time: 2021-01-26
Author: Krishna.Wadhwani@sony.com
File Name: GANs/stylegan2/generate.py
Class Name:
Method Name: main
Project Name: sony/nnabla-examples
Commit Name: 9dab8ae56ce90f1b9ba6808a6e0673ab6f13103e
Time: 2020-12-15
Author: Krishna.Wadhwani@sony.com
File Name: GANs/stylegan2/generate.py
Class Name:
Method Name: main
Project Name: maciejkula/spotlight
Commit Name: 7a82079d10379287ba4e6e42e21b5b3ce8f541bc
Time: 2017-07-13
Author: maciej.kula@gmail.com
File Name: spotlight/sequence/implicit.py
Class Name: ImplicitSequenceModel
Method Name: fit