eb4ffb6cdaf6f04f978fc57e32c95c8b4a33bcb6,examples/federated_learning_with_encryption.py,,,#,203

Before Change


    clients.append(Client("Carol", server.pubkey))

    c = clients[0]
    c.fit(X[0], y[0], n_iter=60, eta=0.1)
    print("Train", mean_square_error(c.predict(X[0]), y[0]))
    print("Test", mean_square_error(c.predict(X_test), y_test))

    // Each client trains a linear regressor on its own data

After Change


    print(aggr)
    for (i, c) in enumerate(clients):
        c.weights = aggr
        y_pred = c.predict(X_test)
        print(mean_square_error(y_pred, y_test))


Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: data61/python-paillier
Commit Name: eb4ffb6cdaf6f04f978fc57e32c95c8b4a33bcb6
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/federated_learning_with_encryption.py
Class Name:
Method Name:


Project Name: data61/python-paillier
Commit Name: 8184b9fdf51e3f75835fe1f2d56c294d16686241
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/federated_learning_with_encryption.py
Class Name:
Method Name:


Project Name: AIRLab-POLIMI/mushroom
Commit Name: 3ce4fd552a89c6fd5e479ad3713418b036337ff6
Time: 2021-01-08
Author: carlo.deramo@gmail.com
File Name: mushroom_rl/algorithms/value/batch_td/fqi.py
Class Name: FQI
Method Name: fit