516c2a4c7e8f92e1ea299e966215c2ffe4c5b980,cifar10.py,,,#,14
Before Change
scores = model.evaluate_generator(test_generator.flow(testX, testY, nb_epoch), testX.shape[0])
print("Accuracy = %f" % (100 * scores[1]))
print("Error = %f" % (100 - 100 * scores[1]))
After Change
// validation_data=(testX, Y_test),
// nb_val_samples=testX.shape[0], verbose=2)
yPreds = model.predict(testX)
yPred = np.argmax(yPreds, axis=1)
yTrue = testY
accuracy = metrics.accuracy_score(yTrue, yPred) * 100
error = 100 - accuracy
print("Accuracy : ", accuracy)
print("Error : ", error)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: titu1994/DenseNet
Commit Name: 516c2a4c7e8f92e1ea299e966215c2ffe4c5b980
Time: 2016-12-07
Author: titu1994@gmail.com
File Name: cifar10.py
Class Name:
Method Name:
Project Name: philipperemy/keras-tcn
Commit Name: 0cfe82c6beb9a28a5ff7da81b86fa0e93c388f14
Time: 2019-11-20
Author: premy@cogent.co.jp
File Name: tasks/save_reload_model.py
Class Name:
Method Name:
Project Name: data61/python-paillier
Commit Name: 8184b9fdf51e3f75835fe1f2d56c294d16686241
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/federated_learning_with_encryption.py
Class Name:
Method Name: