if rising:
D = numpy.maximum(0.0, D)
else:
D = numpy.abs(D)
pass
////// Average over mel bands
D = numpy.mean(D, 0)
////// Filter with a difference operator
D = scipy.signal.lfilter([1.0, -1.0], [1.0, -0.99], D)
////// Normalize by the maximum onset strength
return D / numpy.max(D)
def _recursive_beat_decomposition(onset, t_min=16, sigma=16):
n = len(onset)
After Change
if Znorm == 0:
Znorm = 1.0
pass
return (Z / Znorm, D)
def _recursive_beat_decomposition(onset, t_min=16, sigma=16):
n = len(onset)