f98bd2ec9d4289939ff6661d5a9c43ee7e8996f7,models/shared_rnn.py,RNN,forward,#RNN#,195
 
Before Change
                norm = norm.unsqueeze(-1)
                detached_norm = torch.autograd.Variable(norm.data,
                                                        requires_grad=False)
                hidden[hidden_norms > max_norm] *= max_norm/detached_norm
            logits.append(logit)
            h1tohT.append(hidden)
After Change
                // This workaround for PyTorch v0.3.1 does everything in numpy,
                // because the PyTorch slicing and slice assignment is too
                // flaky.
                hidden_norms = hidden_norms.data.cpu().numpy()
                clipped_num += 1
                if hidden_norms.max() > max_clipped_norm:
                    max_clipped_norm = hidden_norms.max()
                clip_select = hidden_norms > max_norm
                clip_norms = hidden_norms[clip_select]
                mask = np.ones(hidden.size())
                normalizer = max_norm/clip_norms
                normalizer = normalizer[:, np.newaxis]

In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 5
Instances
 Project Name: carpedm20/ENAS-pytorch
 Commit Name: f98bd2ec9d4289939ff6661d5a9c43ee7e8996f7
 Time: 2018-03-11
 Author: dukebw@mcmaster.ca
 File Name: models/shared_rnn.py
 Class Name: RNN
 Method Name: forward
 Project Name: leftthomas/SRGAN
 Commit Name: 14c0cf773f514788aca6b935298fa186890eecc1
 Time: 2017-11-21
 Author: leftthomas@qq.com
 File Name: test.py
 Class Name: 
 Method Name: 
 Project Name: interactiveaudiolab/nussl
 Commit Name: dc3462d4f4fe48bc075b48815d026dc4a8acceb7
 Time: 2019-07-19
 Author: prem@u.northwestern.edu
 File Name: nussl/separation/clustering/clustering_algorithms.py
 Class Name: DeepClustering
 Method Name: extract_features
 Project Name: hunkim/PyTorchZeroToAll
 Commit Name: c4610ff26a01a0622bc11dcac0f0812f05c56e0c
 Time: 2017-11-02
 Author: hunkim@gmail.com
 File Name: 12_4_name_classify.py
 Class Name: RNNClassifier
 Method Name: forward