d2b634744401fff8166fed16f47e3be9be94cd6d,modules.py,glimpse_sensor,denormalize,#glimpse_sensor#,67
Before Change
def denormalize(self, T, coords):
x_original = torch.mul(coords[:, 0], int(T/2)) + int((T/2))
y_original = torch.mul(coords[:, 1], int(T/2)) + int((T/2))
return torch.stack([x_original, y_original]).long()
def extract_single_patch(self, x, center, size):
Extract a single patch for each image in the minibatch
After Change
coordinates in the range [0, T] where T is
the size of the image.
return (0.5 * ((coords + 1.0) * T)).long()
def normalize(self, T, coords):
Convert coordinates in the range [0, T] to
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances Project Name: kevinzakka/recurrent-visual-attention
Commit Name: d2b634744401fff8166fed16f47e3be9be94cd6d
Time: 2018-01-20
Author: kevinarmandzakka@gmail.com
File Name: modules.py
Class Name: glimpse_sensor
Method Name: denormalize
Project Name: metalbubble/moments_models
Commit Name: c233603fd47625354ad66c4e89521e21206f4980
Time: 2020-04-14
Author: mathewmonfort@gmail.com
File Name: loss_functions.py
Class Name:
Method Name: wlsep
Project Name: pytorch/examples
Commit Name: 67e5b062a27561aeca5d1bc8ffc623ea1ff629fb
Time: 2019-03-06
Author: zuoxingdong@users.noreply.github.com
File Name: vae/main.py
Class Name: VAE
Method Name: reparameterize