f819a34e2fbea2dab4997b3b236b517fa12d115d,examples/03_midwest_survey.py,,,#,110
Before Change
from sklearn.model_selection import StratifiedKFold
cv = StratifiedKFold(n_splits=3, random_state=12, shuffle=True)
all_scores = []
for method in ["one-hot", "similarity"]:
pipeline = make_pipeline(method)
// Now predict the census region of each participant
scores = cross_val_score(pipeline, df, y, cv=cv)
After Change
ax = seaborn.boxplot(data=pd.DataFrame(all_scores), orient="h")
import matplotlib.pyplot as plt
plt.ylabel("Encoding", size=17)
plt.xlabel("Prediction accuracy", size=17)
plt.yticks(size=17)
plt.tight_layout()
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: dirty-cat/dirty_cat
Commit Name: f819a34e2fbea2dab4997b3b236b517fa12d115d
Time: 2018-06-08
Author: gael.varoquaux@normalesup.org
File Name: examples/03_midwest_survey.py
Class Name:
Method Name:
Project Name: dirty-cat/dirty_cat
Commit Name: f819a34e2fbea2dab4997b3b236b517fa12d115d
Time: 2018-06-08
Author: gael.varoquaux@normalesup.org
File Name: examples/02_predict_employee_salaries.py
Class Name:
Method Name:
Project Name: mpatacchiola/deepgaze
Commit Name: 0d022010a8e9a3ebb1aaebd0d13097c2053b8f83
Time: 2016-11-15
Author: massimiliano.patacchiola@gmail.com
File Name: examples/ex_color_classification_images/ex_color_classification_image.py
Class Name:
Method Name: