c6a079c70368b41873f3288b05b74d38f74b6680,run_inference.py,,main,#,36
Before Change
// compute output
output = model(input_var)
rgb_flow = flow2rgb(args.div_flow * output .data[0 ].cpu().numpy(), max_value=args.max_flow)
to_save = (rgb_flow * 255).astype(np.uint8)
imsave(save_path/(img1_file.namebase[:-2] + "_flow.png"), to_save)
After Change
if args.bidirectional:
// feed inverted pair along with normal pair
inverted_input_var = torch.autograd.Variable(torch .cat([img2, img1],0 ).cuda(), volatile=True).unsqueeze(0)
input_var = torch.cat([input_var, inverted_input_var])
// compute output
output = model(input_var)
if not args.no_resize:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: ClementPinard/FlowNetPytorch
Commit Name: c6a079c70368b41873f3288b05b74d38f74b6680
Time: 2018-03-30
Author: clement.pinard@parrot.com
File Name: run_inference.py
Class Name:
Method Name: main
Project Name: kevinzakka/recurrent-visual-attention
Commit Name: 520e8fb57b890a7249334d9e90c9ad209d0b849f
Time: 2018-02-10
Author: kevinarmandzakka@gmail.com
File Name: modules.py
Class Name: retina
Method Name: foveate
Project Name: eriklindernoren/PyTorch-YOLOv3
Commit Name: 142bc348f80ae6c1f6ede5b598b0443af8048717
Time: 2018-05-22
Author: eriklindernoren@live.se
File Name: models.py
Class Name: Darknet
Method Name: forward