f0fe1d57b54b7670ad4586e19d4383db561e84e7,code/distance/mmd.py,,linear_mmd2,#,17
Before Change
def linear_mmd2(f_of_X, f_of_Y):
loss = 0.0
delta = f_of_X - f_of_Y
loss = torch.mean((delta[:-1] * delta[1:]).sum(1))
return loss
// Consider linear time MMD with a polynomial kernel:
After Change
// f_of_Y: batch_size * k
def linear_mmd2(f_of_X, f_of_Y):
loss = 0.0
delta = f_of_X.float().mean() - f_of_Y.float().mean()
loss = delta.dot(delta.T)
return loss
// Consider linear time MMD with a polynomial kernel:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances Project Name: jindongwang/transferlearning
Commit Name: f0fe1d57b54b7670ad4586e19d4383db561e84e7
Time: 2019-12-16
Author: jindongwang@outlook.com
File Name: code/distance/mmd.py
Class Name:
Method Name: linear_mmd2
Project Name: maciejkula/spotlight
Commit Name: 2767c948afa434f863df3b5eb1946a032dfba588
Time: 2017-07-13
Author: maciej.kula@gmail.com
File Name: spotlight/losses.py
Class Name:
Method Name: hinge_loss
Project Name: jindongwang/transferlearning
Commit Name: f0fe1d57b54b7670ad4586e19d4383db561e84e7
Time: 2019-12-16
Author: jindongwang@outlook.com
File Name: code/deep/DDC_DeepCoral/mmd.py
Class Name: MMD_loss
Method Name: linear_mmd2