7c960272c5ab4d25a022538f5849addec3e6bfee,loglizer/preprocessing.py,FeatureExtractor,transform,#FeatureExtractor#,71
  
 
Before Change 
        for i in range(X_seq.shape[0]):
            X_df.loc[i, :] = [0] * len(self.events)
            event_counts = Counter(X_seq[i])
            for event, count in event_counts.items() :
                if event in self.events:
                    X_df.loc[i, event] = count
        X = X_df.fillna(0).valuesAfter Change 
            X_new: The transformed data matrix
        
        print("====== Transformed test data summary ======")
        X_counts = [] 
        for i in range(X_seq.shape[0]):
            event_counts = Counter(X_seq[i])
            X_counts.append(event_counts)
         X_df = pd.DataFrame(X_counts)
        X_df = X_df.fillna(0)
        empty_events = set(self.events) - set(X_df.columns)
        for event in empty_events:In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances  Project Name: logpai/loglizer
 Commit Name: 7c960272c5ab4d25a022538f5849addec3e6bfee
 Time: 2019-02-25
 Author: zhujm.home@gmail.com
 File Name: loglizer/preprocessing.py
 Class Name: FeatureExtractor
 Method Name: transform
 Project Name: scikit-learn-contrib/categorical-encoding
 Commit Name: b5034279b48ae96ffdd4714f96e0f62b0f4807fc
 Time: 2018-10-26
 Author: jcastaldo08@gmail.com
 File Name: category_encoders/ordinal.py
 Class Name: OrdinalEncoder
 Method Name: ordinal_encoding
 Project Name: biocore/scikit-bio
 Commit Name: 30d73c7518adcde7ed8340d76e306bd290e0949a
 Time: 2016-06-07
 Author: gregcaporaso@gmail.com
 File Name: skbio/stats/composition.py
 Class Name: 
 Method Name: ancom