7c960272c5ab4d25a022538f5849addec3e6bfee,loglizer/preprocessing.py,FeatureExtractor,transform,#FeatureExtractor#,71
Before Change
for i in range(X_seq.shape[0]):
X_df.loc[i, :] = [0] * len(self.events)
event_counts = Counter(X_seq[i])
for event, count in event_counts.items() :
if event in self.events:
X_df.loc[i, event] = count
X = X_df.fillna(0).values
After Change
X_new: The transformed data matrix
print("====== Transformed test data summary ======")
X_counts = []
for i in range(X_seq.shape[0]):
event_counts = Counter(X_seq[i])
X_counts.append(event_counts)
X_df = pd.DataFrame(X_counts)
X_df = X_df.fillna(0)
empty_events = set(self.events) - set(X_df.columns)
for event in empty_events:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances Project Name: logpai/loglizer
Commit Name: 7c960272c5ab4d25a022538f5849addec3e6bfee
Time: 2019-02-25
Author: zhujm.home@gmail.com
File Name: loglizer/preprocessing.py
Class Name: FeatureExtractor
Method Name: transform
Project Name: scikit-learn-contrib/categorical-encoding
Commit Name: b5034279b48ae96ffdd4714f96e0f62b0f4807fc
Time: 2018-10-26
Author: jcastaldo08@gmail.com
File Name: category_encoders/ordinal.py
Class Name: OrdinalEncoder
Method Name: ordinal_encoding
Project Name: biocore/scikit-bio
Commit Name: 30d73c7518adcde7ed8340d76e306bd290e0949a
Time: 2016-06-07
Author: gregcaporaso@gmail.com
File Name: skbio/stats/composition.py
Class Name:
Method Name: ancom