// which is smaller than the input -- a bottleneck to force
// generalization
hidden_layer_sizes = [
int(np.ceil(n_dims * (2.0 ** exponent)))
for exponent in range(4, -2, -1)
]
print("Hidden layer sizes: %s" % (hidden_layer_sizes,))
After Change
// mask of missing values and then transform down to a layer
// which is smaller than the input -- a bottleneck to force
// generalization
hidden_layer_sizes = [
8 * n_dims,
2 * n_dims,
int(np.ceil(0.5 * n_dims)),
]
print("Hidden layer sizes: %s" % (hidden_layer_sizes,))
nn = Sequential()
first_layer_size = hidden_layer_sizes[0]