x_binary = np.zeros([num_bits] + list(x.shape[1:]))
powers = [2**-(i+1) for i in range(num_bits)]
a = np.copy(x)
for i in range(num_bits):
mask = np.greater(a, powers[i])
x_binary[i] = mask
a -= mask * powers[i]
return x_binary
After Change
@property
def class_name(self):
Get class name.
return self.__class__.__name__
class SpikeReshape(Reshape):
Spike reshape layer.
def __init__(self, target_shape, **kwargs):
kwargs.pop(str("config"))
Reshape.__init__(self, target_shape, **kwargs)
@staticmethod
def get_time():