weights=sample_weight)
if isinstance(multioutput, str):
if multioutput == "raw_values":
return output_errors if squared else np.sqrt(output_errors)
elif multioutput == "uniform_average":
// pass None as weights to np.average: uniform mean
multioutput = None
After Change
output_errors = np.average((y_true - y_pred) ** 2, axis=0,
weights=sample_weight)
if not squared:
output_errors = np.sqrt(output_errors)
if isinstance(multioutput, str):
if multioutput == "raw_values":
return output_errors
elif multioutput == "uniform_average":