e33d1ba9150a3084947ae000f12a9b6f2f644648,conceptnet5/vectors/evaluation/wordsim.py,,evaluate_semeval_monolingual,#,307

Before Change


    individual scores on the four languages on which the system performed best. If less than four
    scores are supplied, the global score is NaN.
    
    scores = []
    for lang in ["en", "de", "es", "it", "fa"]:
        scores.append(spearman_evaluate(vectors, read_semeval_monolingual(lang)))
    top_scores = sorted(scores, key=lambda x: x["acc"] if not np.isnan(x["acc"]) else 0)[-4:]
    acc_average = tmean([score["acc"] for score in top_scores])
    low_average = tmean([score["low"] for score in top_scores])
    high_average = tmean([score["high"] for score in top_scores])
    return pd.Series(
        [acc_average, low_average, high_average],

After Change


    
    spearman_score = measure_correlation(spearmanr, vectors, read_semeval_monoling(lang))
    pearson_score = measure_correlation(pearsonr, vectors, read_semeval_monoling(lang))
    score = compute_semeval_score(spearman_score, pearson_score)
    return score


def evaluate_semeval_crosslingual(vectors, lang1, lang2):
    
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 6

Instances


Project Name: commonsense/conceptnet5
Commit Name: e33d1ba9150a3084947ae000f12a9b6f2f644648
Time: 2017-02-23
Author: joanna.teresa.duda@gmail.com
File Name: conceptnet5/vectors/evaluation/wordsim.py
Class Name:
Method Name: evaluate_semeval_monolingual


Project Name: miso-belica/sumy
Commit Name: 54157d4915902da0fb79f8fd7fdfafe536343c0f
Time: 2013-03-18
Author: miso.belica@gmail.com
File Name: sumy/algorithms/luhn.py
Class Name: LuhnMethod
Method Name: _get_significant_words


Project Name: etal/cnvkit
Commit Name: 7f5ffac4a2d292e215142c56fe97dcf53be560d6
Time: 2016-01-06
Author: eric.talevich@gmail.com
File Name: cnvlib/smoothing.py
Class Name:
Method Name: rolling_median