idx = np.random.randint(0, X_train.shape[0], half_batch)
imgs = X_train[idx]
noise = np.random.normal(0, 1, (half_batch, 100))
// The labels of the digits that the generator tries to create an
// image representation of
After Change
// The labels of the digits that the generator tries to create an
// image representation of
sampled_labels = np.random.randint(0, 10, (batch_size, 1))
// Generate a half batch of new images
gen_imgs = self.generator.predict([noise, sampled_labels])