eb3909bf3767ceb38119bc93f055650b60cced23,tpot/config/classifier_cuml.py,,,#,32

Before Change



    "sklearn.preprocessing.PolynomialFeatures": {
        "degree": [2],
        "include_bias": [False],
        "interaction_only": [False]
    },

After Change


        "n_estimators": [100],
        "max_depth": range(3, 10),
        "learning_rate": [1e-2, 1e-1, 0.5, 1.],
        "subsample": np.arange(0.05, 1.01, 0.05),
        "min_child_weight": range(1, 21),
        "alpha": [1, 10],
        "tree_method": ["gpu_hist"],
        "nthread": [1]
    },

    // Sklearn Preprocesssors

    "sklearn.preprocessing.Binarizer": {
        "threshold": np.arange(0.0, 1.01, 0.05)
    },

    "sklearn.decomposition.FastICA": {
        "tol": np.arange(0.0, 1.01, 0.05)
    },

    "sklearn.cluster.FeatureAgglomeration": {
        "linkage": ["ward", "complete", "average"],
        "affinity": ["euclidean", "l1", "l2", "manhattan", "cosine"]
    },

    "sklearn.preprocessing.MaxAbsScaler": {
    },

    "sklearn.preprocessing.MinMaxScaler": {
    },

    "sklearn.preprocessing.Normalizer": {
        "norm": ["l1", "l2", "max"]
    },

    "sklearn.kernel_approximation.Nystroem": {
        "kernel": ["rbf", "cosine", "chi2", "laplacian", "polynomial", "poly", "linear", "additive_chi2", "sigmoid"],
        "gamma": np.arange(0.0, 1.01, 0.05),
        "n_components": range(1, 11)
    },

    "sklearn.decomposition.PCA": {
        "svd_solver": ["randomized"],
        "iterated_power": range(1, 11)
    },

    "sklearn.kernel_approximation.RBFSampler": {
        "gamma": np.arange(0.0, 1.01, 0.05)
    },

    "sklearn.preprocessing.RobustScaler": {
    },

    "sklearn.preprocessing.StandardScaler": {
    },

    "tpot.builtins.ZeroCount": {
    },

    "tpot.builtins.OneHotEncoder": {
        "minimum_fraction": [0.05, 0.1, 0.15, 0.2, 0.25],
        "sparse": [False],
        "threshold": [10]
    },

    // Selectors
    "sklearn.feature_selection.SelectFwe": {
        "alpha": np.arange(0, 0.05, 0.001),
        "score_func": {
            "sklearn.feature_selection.f_classif": None
        }
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: EpistasisLab/tpot
Commit Name: eb3909bf3767ceb38119bc93f055650b60cced23
Time: 2020-08-26
Author: nickb500@gmail.com
File Name: tpot/config/classifier_cuml.py
Class Name:
Method Name:


Project Name: EpistasisLab/tpot
Commit Name: eb3909bf3767ceb38119bc93f055650b60cced23
Time: 2020-08-26
Author: nickb500@gmail.com
File Name: tpot/config/classifier_cuml.py
Class Name:
Method Name:


Project Name: EpistasisLab/tpot
Commit Name: 29ee28f40ecfd1b6dd27c80b9a1e824b11bbbc19
Time: 2020-08-26
Author: nickb500@gmail.com
File Name: tpot/config/regressor_cuml.py
Class Name:
Method Name:


Project Name: mpatacchiola/deepgaze
Commit Name: 0d022010a8e9a3ebb1aaebd0d13097c2053b8f83
Time: 2016-11-15
Author: massimiliano.patacchiola@gmail.com
File Name: examples/ex_color_classification_images/ex_color_classification_image.py
Class Name:
Method Name: