b914816142ae2776f531be1c0b49812a0bfde91f,torchdiffeq/_impl/adams.py,,g_and_explicit_phi,#,36
Before Change
device = curr_t.device
g = torch.empty(k + 1, dtype=dtype, device=device)
explicit_phi = []
beta = torch.tensor(1, dtype=dtype, device=device)
g[0] = 1
c = torch.arange(1, k + 2, dtype=dtype, device=device).reciprocal()
After Change
for j in range(1, k):
beta = (next_t - prev_t[j - 1]) / (curr_t - prev_t[j]) * beta
beat_cast = beta.to(implicit_phi[j][0])
explicit_phi.append(tuple(iphi_ * beat_cast for iphi_ in implicit_phi[j]))
c = c[:-1] - c[1:] if j == 1 else c[:-1] - c[1:] * dt / (next_t - prev_t[j - 1])
g[j] = c[0]
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: rtqichen/torchdiffeq
Commit Name: b914816142ae2776f531be1c0b49812a0bfde91f
Time: 2020-08-04
Author: 33688385+patrick-kidger@users.noreply.github.com
File Name: torchdiffeq/_impl/adams.py
Class Name:
Method Name: g_and_explicit_phi
Project Name: riga/tfdeploy
Commit Name: df38756fb9220bd605acc3e8d5fd42f7f43c3a1e
Time: 2016-03-10
Author: marcelrieger@me.com
File Name: tests/test_ops.py
Class Name: OpsTestCase
Method Name: random
Project Name: nilearn/nilearn
Commit Name: e2bf248a400175ac1a153cdba62147e9162a710f
Time: 2019-04-17
Author: gkiar07@gmail.com
File Name: nilearn/image/resampling.py
Class Name:
Method Name: resample_img