eb4ffb6cdaf6f04f978fc57e32c95c8b4a33bcb6,examples/federated_learning_with_encryption.py,Client,fit,#Client#,117
Before Change
//
// print("Error %.4f" % mean_square_error(self.predict(X), y))
self.weights = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
// print(self.weights)
return self
After Change
for i in range(length):
delta = self.predict(X[i, :]) - y[i]
for j in range(dim):
self.weights[j] -= eta * delta * X[i, j]
// print("Error %.4f" % mean_square_error(self.predict(X), y))
// self.weights = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: data61/python-paillier
Commit Name: eb4ffb6cdaf6f04f978fc57e32c95c8b4a33bcb6
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/federated_learning_with_encryption.py
Class Name: Client
Method Name: fit
Project Name: nipy/dipy
Commit Name: 30eadc321c1755eca615a39bb4b8b5fc1e769f70
Time: 2019-03-10
Author: rafaelnh21@gmail.com
File Name: dipy/reconst/mdki.py
Class Name:
Method Name: _wls_fit_mdki
Project Name: hmmlearn/hmmlearn
Commit Name: db2d06991c37812b38330b32588c12c55fe021fd
Time: 2019-11-20
Author: anntzer.lee@gmail.com
File Name: lib/hmmlearn/stats.py
Class Name:
Method Name: _log_multivariate_normal_density_diag