0db665e29744767c24b40e0d71be830d1079e5ec,librosa/core/constantq.py,,__fft_filters,#,462

Before Change


                                        return_lengths=True)

    // FFT the filters
    min_filter_length = np.min(lengths)

    // Filters are padded up to the nearest integral power of 2
    n_fft = basis.shape[1]

After Change


    n_fft = basis.shape[1]

    if hop_length is not None and n_fft < 2 * hop_length:
        n_fft = int(2.0 ** (np.ceil(np.log2(2 * hop_length))))

    // normalize by inverse length to compensate for phase invariance
    basis *= lengths.reshape((-1, 1)) / n_fft

    // FFT and retain only the non-negative frequencies
    fft_basis = np.fft.fft(basis, n=n_fft, axis=1)[:, :(n_fft / 2)+1]
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 6

Instances


Project Name: librosa/librosa
Commit Name: 0db665e29744767c24b40e0d71be830d1079e5ec
Time: 2015-01-27
Author: brian.mcfee@nyu.edu
File Name: librosa/core/constantq.py
Class Name:
Method Name: __fft_filters


Project Name: philipperemy/keras-activations
Commit Name: 8a5a6993cec37c98e823d251febcd0b91089bd44
Time: 2019-03-17
Author: 28253514+Stochastic13@users.noreply.github.com
File Name: keract/keract.py
Class Name:
Method Name: display_heatmaps


Project Name: iskandr/fancyimpute
Commit Name: ea80e4bf2033628822e2b0f92e2e373d1b3c147b
Time: 2015-12-31
Author: alex.rubinsteyn@gmail.com
File Name: fancyimpute/auto_encoder.py
Class Name: AutoEncoder
Method Name: complete