Create and return a keras model of a RNN
HIDDEN_LAYER_SIZE = 256
model = Sequential()
model.add(GRU(
HIDDEN_LAYER_SIZE,
input_dim=embedding_size,
input_length=SAMPLE_LENGTH,
init="glorot_uniform",
inner_init="normal",
activation="relu",
))
model.add(BatchNormalization())
model.add(Dropout(0.1))
model.add(Dense(output_length, activation="sigmoid"))
model.compile(
loss="binary_crossentropy",
optimizer="adam",