f4beaac559e00a3676d942dc7e8fea69efc01cfe,catalyst/metrics/mrr.py,,mrr,#,8
Before Change
result (torch.Tensor):
The mrr score for each user.
k = min(outputs.size(1), k)
_, indices_for_sort = outputs.sort(descending=True, dim=-1)
true_sorted_by_preds = torch.gather(
targets, dim=-1, index=indices_for_sort
)
After Change
mrr_score (torch.Tensor):
The mrr score for each batch.
results = []
for k in topk:
results.append(torch.mean(reciprocal_rank(outputs, targets, k)))
return results
__all__ = ["reciprocal_rank", "mrr"]
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances Project Name: Scitator/catalyst
Commit Name: f4beaac559e00a3676d942dc7e8fea69efc01cfe
Time: 2020-11-30
Author: raveforlive@gmail.com
File Name: catalyst/metrics/mrr.py
Class Name:
Method Name: mrr
Project Name: nilmtk/nilmtk
Commit Name: 626173412d4281b693244e0705a787c4e7c08031
Time: 2014-07-09
Author: jack-list@xlk.org.uk
File Name: nilmtk/metrics.py
Class Name:
Method Name: fraction_energy_assigned_correctly
Project Name: scikit-optimize/scikit-optimize
Commit Name: a225606e6bb4d402b6000e90b91e7acd8e068f88
Time: 2018-05-29
Author: stefano.cereda@moviri.com
File Name: skopt/plots.py
Class Name:
Method Name: plot_regret