60a9e035838cb88e09d73091d23891fbd498c658,7_reconstruct_imagined_image.py,,,#,28

Before Change



// Setup results directory ----------------------------------------------------

save_dir = os.path.join(results_dir, os.path.splitext(__file__)[0] + "_" + datetime.now().strftime("%Y%m%dT%H%M%S"))
if not os.path.exists(save_dir):
    os.makedirs(save_dir)

// Set reconstruction options -------------------------------------------------

opts = {
    // The loss function type: {"l2","l1","inner","gram"}
    "loss_type": "l2",

    // The maximum number of iterations
    "maxiter": max_iteration,

    // The initial image for the optimization (setting to None will use random noise as initial image)
    "initial_image": initial_image,

    // Display the information on the terminal or not
    "disp": True
}

// Save the optional parameters
with open(os.path.join(save_dir, "options.pkl"), "w") as f:
    pickle.dump(opts, f)

// Reconstrucion --------------------------------------------------------------

for subject, roi, image_label in product(subjects_list, rois_list, image_label_list):

    print("")
    print("Subject:     " + subject)
    print("ROI:         " + roi)
    print("Image label: " + image_label)
    print("")

    // Load the decoded CNN features
    features = {}
    for layer in layers:
        // The file full name depends on the data structure for decoded CNN features
        file_name = decode_feature_filename(network, layer, subject, roi, image_type, image_label)
        feat = sio.loadmat(file_name)["feat"]
        if "fc" in layer:
            feat = feat.reshape(feat.size)

        // Correct the norm of the decoded CNN features
        feat_std = estimate_cnn_feat_std(feat)
        feat = (feat / feat_std) * feat_std0[layer]

        features.update({layer: feat})

    // Weight of each layer in the total loss function

    // Norm of the CNN features for each layer
    feat_norm = np.array([np.linalg.norm(features[layer]) for layer in layers], dtype="float32")

    // Use the inverse of the squared norm of the CNN features as the weight for each layer
    weights = 1. / (feat_norm ** 2)

    // Normalise the weights such that the sum of the weights = 1
    weights = weights / weights.sum()
    layer_weight = dict(zip(layers, weights))

    opts.update({"layer_weight": layer_weight})

    // Reconstruction
    snapshots_dir = os.path.join(save_dir, "snapshots_%s-%s" % (subject, roi), "image-%s" % image_label)
    recon_img, loss_list = reconstruct_image(features, net,
                                             save_intermediate=True,
                                             save_intermediate_path=snapshots_dir,
                                             **opts)

    // Save the results

    // Save the raw reconstructed image
    save_name = "recon_img" + "-" + subject + "-" + roi + "-" + image_label + ".mat"
    sio.savemat(os.path.join(save_dir, save_name), {"recon_img": recon_img})

    // To better display the image, clip pixels with extreme values (0.02% of
    // pixels with extreme low values and 0.02% of the pixels with extreme high
    // values). And then normalise the image by mapping the pixel value to be
    // within [0,255].
    save_name = "recon_img" + "-" + subject + "-" + roi + "-" + image_label + ".jpg"
    PIL.Image.fromarray(normalise_img(clip_extreme_value(recon_img, pct=0.04))).save(os.path.join(save_dir, save_name))

print("Done")

After Change


// Setup results directory ----------------------------------------------------

save_dir_root = os.path.join(results_dir, os.path.splitext(__file__)[0])
if not os.path.exists(save_dir_root):
    os.makedirs(save_dir_root)

// Set reconstruction options -------------------------------------------------

opts = {
    // The loss function type: {"l2","l1","inner","gram"}
    "loss_type": "l2",

    // The maximum number of iterations
    "maxiter": max_iteration,

    // The initial image for the optimization (setting to None will use random noise as initial image)
    "initial_image": initial_image,

    // Display the information on the terminal or not
    "disp": True
}

// Save the optional parameters
with open(os.path.join(save_dir_root, "options.pkl"), "w") as f:
    pickle.dump(opts, f)

// Reconstrucion --------------------------------------------------------------

for subject, roi, image_label in product(subjects_list, rois_list, image_label_list):

    print("")
    print("Subject:     " + subject)
    print("ROI:         " + roi)
    print("Image label: " + image_label)
    print("")

    save_dir = os.path.join(save_dir_root, subject, roi)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    // Load the decoded CNN features
    features = {}
    for layer in layers:
        // The file full name depends on the data structure for decoded CNN features
        file_name = decode_feature_filename(network, layer, subject, roi, image_type, image_label)
        feat = sio.loadmat(file_name)["feat"]
        if "fc" in layer:
            feat = feat.reshape(feat.size)

        // Correct the norm of the decoded CNN features
        feat_std = estimate_cnn_feat_std(feat)
        feat = (feat / feat_std) * feat_std0[layer]

        features.update({layer: feat})

    // Weight of each layer in the total loss function

    // Norm of the CNN features for each layer
    feat_norm = np.array([np.linalg.norm(features[layer]) for layer in layers], dtype="float32")

    // Use the inverse of the squared norm of the CNN features as the weight for each layer
    weights = 1. / (feat_norm ** 2)

    // Normalise the weights such that the sum of the weights = 1
    weights = weights / weights.sum()
    layer_weight = dict(zip(layers, weights))

    opts.update({"layer_weight": layer_weight})

    // Reconstruction
    snapshots_dir = os.path.join(save_dir, "snapshots", "image-%s" % image_label)
    recon_img, loss_list = reconstruct_image(features, net,
                                             save_intermediate=True,
                                             save_intermediate_path=snapshots_dir,
                                             **opts)

    // Save the results

    // Save the raw reconstructed image
    save_name = "recon_img" + "-" + image_label + ".mat"
    sio.savemat(os.path.join(save_dir, save_name), {"recon_img": recon_img})

    // To better display the image, clip pixels with extreme values (0.02% of
    // pixels with extreme low values and 0.02% of the pixels with extreme high
    // values). And then normalise the image by mapping the pixel value to be
    // within [0,255].
    save_name = "recon_img_normalized" + "-" + image_label + ".jpg"
    PIL.Image.fromarray(normalise_img(clip_extreme_value(recon_img, pct=0.04))).save(os.path.join(save_dir, save_name))

print("Done")
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 6

Non-data size: 45

Instances


Project Name: KamitaniLab/DeepImageReconstruction
Commit Name: 60a9e035838cb88e09d73091d23891fbd498c658
Time: 2019-08-01
Author: s_aoki@i.kyoto-u.ac.jp
File Name: 7_reconstruct_imagined_image.py
Class Name:
Method Name:


Project Name: KamitaniLab/DeepImageReconstruction
Commit Name: 60a9e035838cb88e09d73091d23891fbd498c658
Time: 2019-08-01
Author: s_aoki@i.kyoto-u.ac.jp
File Name: 5_reconstruct_shape_image_different_ROI.py
Class Name:
Method Name:


Project Name: KamitaniLab/DeepImageReconstruction
Commit Name: 60a9e035838cb88e09d73091d23891fbd498c658
Time: 2019-08-01
Author: s_aoki@i.kyoto-u.ac.jp
File Name: 6_reconstruct_alphabet_image.py
Class Name:
Method Name:


Project Name: KamitaniLab/DeepImageReconstruction
Commit Name: 60a9e035838cb88e09d73091d23891fbd498c658
Time: 2019-08-01
Author: s_aoki@i.kyoto-u.ac.jp
File Name: 4_reconstruct_shape_image.py
Class Name:
Method Name:


Project Name: KamitaniLab/DeepImageReconstruction
Commit Name: 60a9e035838cb88e09d73091d23891fbd498c658
Time: 2019-08-01
Author: s_aoki@i.kyoto-u.ac.jp
File Name: 1_reconstruct_natural_image.py
Class Name:
Method Name:


Project Name: KamitaniLab/DeepImageReconstruction
Commit Name: 60a9e035838cb88e09d73091d23891fbd498c658
Time: 2019-08-01
Author: s_aoki@i.kyoto-u.ac.jp
File Name: 2_reconstruct_natural_image_without_DGN.py
Class Name:
Method Name:


Project Name: KamitaniLab/DeepImageReconstruction
Commit Name: 60a9e035838cb88e09d73091d23891fbd498c658
Time: 2019-08-01
Author: s_aoki@i.kyoto-u.ac.jp
File Name: 7_reconstruct_imagined_image.py
Class Name:
Method Name: