94472724eedd3382396d435fe2810422f472967e,tests/squeezenet.py,,,#,11
Before Change
import torch.nn as nn
from torch.autograd import Variable
sys.path.append("../pytorch2keras")
from converter import pytorch_to_keras
// The code from torchvision
import math
After Change
k_model = pytorch_to_keras(model, input_var, (3, 224, 224,), verbose=True)
pytorch_output = output.data.numpy()
keras_output = k_model.predict(input_np)
error = np.max(pytorch_output - keras_output)
print(error )
if max_error < error:
max_error = error
print("Max error: {0}".format(max_error))
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 8
Instances Project Name: nerox8664/pytorch2keras
Commit Name: 94472724eedd3382396d435fe2810422f472967e
Time: 2018-05-30
Author: nerox8664@gmail.com
File Name: tests/squeezenet.py
Class Name:
Method Name:
Project Name: nerox8664/pytorch2keras
Commit Name: 94472724eedd3382396d435fe2810422f472967e
Time: 2018-05-30
Author: nerox8664@gmail.com
File Name: tests/embedding.py
Class Name:
Method Name:
Project Name: data61/python-paillier
Commit Name: 8184b9fdf51e3f75835fe1f2d56c294d16686241
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/federated_learning_with_encryption.py
Class Name:
Method Name: