66584dea87782aed5509e4269a9f015002e1f5c1,pytext/torchscript/module.py,PyTextEmbeddingModuleWithDense,forward,#PyTextEmbeddingModuleWithDense#,1232
Before Change
// call model
dense_feat = self.normalizer.normalize(dense_feat)
dense_tensor = torch.tensor(dense_feat, dtype=torch.float)
if self.tensorizer.device != "":
dense_tensor = dense_tensor.to(self.tensorizer.device)
sentence_embedding = self._forward(inputs, dense_tensor)
if self.concat_dense:
return torch.cat([sentence_embedding, dense_tensor], 1)
else:
After Change
texts = texts[max_batch:]
dense_feat = dense_feat[max_batch:]
return result
@torch.jit.script_method
def make_prediction(
self,
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
Project Name: facebookresearch/pytext
Commit Name: 66584dea87782aed5509e4269a9f015002e1f5c1
Time: 2021-02-23
Author: mikekg@fb.com
File Name: pytext/torchscript/module.py
Class Name: PyTextEmbeddingModuleWithDense
Method Name: forward
Project Name: facebookresearch/pytext
Commit Name: 22cb76a3479ceba89addb1f467c2dd573cb29026
Time: 2021-02-16
Author: mikekg@fb.com
File Name: pytext/torchscript/module.py
Class Name: ScriptPyTextModuleWithDense
Method Name: forward
Project Name: arraiy/torchgeometry
Commit Name: 73cb3ff00533b03ab64127d2287f9bdfe30c035c
Time: 2021-01-16
Author: edgar.riba@gmail.com
File Name: kornia/losses/psnr.py
Class Name:
Method Name: psnr_loss