163eb7df13667e21b0e02a2706e18d1f53eee610,skrebate/iterrelief.py,IterRelief,fit,#IterRelief#,69

Before Change




        // Iterate till max iteration reached or all weights are really tiny
        while ((iteration < self.max_iter) & (any(w >= 0.0001 for w in distance_weights))):
            // Run Core Relief-based algorithm
            core_fit = core.fit(self.X_mat, self._y, distance_weights, self.weight_flag)

After Change


                    if diff >= 0.0001:
                        no_diff = False
                        break;
            if no_diff:
                break;

            mx = max(feature_weights)

            weight_history.append(feature_weights)

            //normalize and update scores
            //negative numbers -> 0, positive numbers become normalized so maximum is 1.
            for i in range(0, len(feature_weights)):
                if feature_weights[i] <= 0:
                    feature_weights[i] = 0
                else:
                    feature_weights[i] = feature_weights[i] / mx

            distance_weights += feature_weights

            iteration += 1

Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: EpistasisLab/scikit-rebate
Commit Name: 163eb7df13667e21b0e02a2706e18d1f53eee610
Time: 2020-01-29
Author: alexmxu99@gmail.com
File Name: skrebate/iterrelief.py
Class Name: IterRelief
Method Name: fit


Project Name: EpistasisLab/scikit-rebate
Commit Name: ece383696800b9b34854df27a65a3d1d74669952
Time: 2020-05-28
Author: alexmxu@alexs-mbp-3.attlocal.net
File Name: skrebate/iterrelief.py
Class Name: IterRelief
Method Name: fit


Project Name: nicodv/kmodes
Commit Name: 90d65897916d0caf6ce58c10f098b0c85759dc0d
Time: 2013-08-16
Author: njdevos@gmail.com
File Name: kmodes.py
Class Name: KPrototypes
Method Name: _perform_clustering