3335032e5cbf3776fd48cce2a9e1a597f3b90867,category_encoders/count.py,CountEncoder,__init__,#CountEncoder#,11
Before Change
----------
if (
isinstance(min_group_size, float)
and (min_group_size >= 1.0)
and (min_group_size <= 0.0)
):
raise ValueError(
"If `min_group_size` is float, "
"it must be in the range (0, 1)."
)
self.return_df = return_df
self.drop_invariant = drop_invariant
self.drop_cols = []
self.verbose = verbose
After Change
self.min_group_size = min_group_size
self.min_group_name = min_group_name
self.combine_min_nan_groups = combine_min_nan_groups
self._min_group_categories = {}
def fit(self, X, y=None, **kwargs):
Fit encoder according to X.

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: scikit-learn-contrib/categorical-encoding
Commit Name: 3335032e5cbf3776fd48cce2a9e1a597f3b90867
Time: 2019-05-17
Author: joshua.dunn@engie.com
File Name: category_encoders/count.py
Class Name: CountEncoder
Method Name: __init__
Project Name: thoughtworksarts/EmoPy
Commit Name: 4ceb227fd58b3247dd892b527f0cf3bb014c3c84
Time: 2018-03-19
Author: angelica.perez37@gmail.com
File Name: fermodel.py
Class Name: FERModel
Method Name: __init__
Project Name: scikit-optimize/scikit-optimize
Commit Name: 03f330f19c923b1fcd23d0db1b6b4c4d063fcf58
Time: 2017-11-11
Author: franck@sancare.fr
File Name: skopt/searchcv.py
Class Name: BayesSearchCV
Method Name: fit