76b2432b1c1ee03c80895a5c7d49cde485323102,qucumber/nn_states/complex_wavefunction.py,ComplexWaveFunction,rotated_gradient,#ComplexWaveFunction#,163

Before Change


        :rtype: list[torch.Tensor, torch.Tensor]
        
        rotated_grad = [
            torch.zeros(
                2, getattr(self, net).num_pars, dtype=torch.double, device=self.device
            )
            for net in self.networks
        ]

        Upsi, Upsi_v, v = unitaries.rotate_psi_inner_prod(
            self, basis, sample, include_extras=True
        )

        grad_vp0 = self.rbm_am.effective_energy_gradient(v, reduce=False)
        grad_vp1 = self.rbm_ph.effective_energy_gradient(v, reduce=False)

        // since grad_vp0/1 are real, can just treat the scalar multiplication
        //  and addition as a matrix multiplication
        torch.matmul(Upsi_v, grad_vp0, out=rotated_grad[0])
        torch.matmul(Upsi_v, grad_vp1, out=rotated_grad[1])

        grad = [

After Change



        vr = v.reshape(-1, v.shape[-1])
        raw_grads = [
            self.am_grads(vr).reshape(2, *v.shape[:-1], -1),
            self.ph_grads(vr).reshape(2, *v.shape[:-1], -1),
        ]

        rotated_grad = [cplx.einsum("s...,s...g->...g", Upsi_v, g) for g in raw_grads]

        grad = [
            cplx.real(cplx.scalar_divide(rotated_grad[0], Upsi)),
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 6

Instances


Project Name: PIQuIL/QuCumber
Commit Name: 76b2432b1c1ee03c80895a5c7d49cde485323102
Time: 2019-12-22
Author: emerali@users.noreply.github.com
File Name: qucumber/nn_states/complex_wavefunction.py
Class Name: ComplexWaveFunction
Method Name: rotated_gradient


Project Name: scikit-learn-contrib/DESlib
Commit Name: 44bdf9be3b913a1a0e90115e45edbee192d01b90
Time: 2018-03-31
Author: rafaelmenelau@gmail.com
File Name: deslib/des/probabilistic.py
Class Name: Probabilistic
Method Name: estimate_competence


Project Name: scikit-learn-contrib/DESlib
Commit Name: 3d5ab488d9bf0e5f5ec0ae52de6b30b9b807ff90
Time: 2018-04-01
Author: rafaelmenelau@gmail.com
File Name: deslib/des/des_knn.py
Class Name: DESKNN
Method Name: estimate_competence