b0699b34e2b16cb3abbd22c397077cc6c21ef279,skopt/optimizer/base.py,,base_minimize,#,29
Before Change
elif acq_optimizer == "lbfgs":
best = np.inf
for j in range(n_restarts_optimizer):
x0 = space.transform(space.rvs(n_samples=1,
random_state=rng))[0]
with warnings.catch_warnings():
warnings.simplefilter("ignore")
x, a, _ = fmin_l_bfgs_b(
gaussian_acquisition_1D, x0,
args=(gp, np.min(yi), acq_func, xi, kappa),
bounds=space.transformed_bounds,
approx_grad=False,
maxiter=20)
if a < best:
next_x, best = x, a
// lbfg should handle this but just in case there are precision errors.
next_x = np.clip(
next_x, transformed_bounds[:, 0], transformed_bounds[:, 1])
next_x = space.inverse_transform(next_x.reshape((1, -1)))[0]
yi.append(func(next_x))
After Change
maxiter=20) for x in x0)
results = parallel(jobs)
cand_xs = np.array([r[0] for r in results])
cand_acqs = np.array([r[1] for r in results])
best_ind = np.argmin(cand_acqs)
a = cand_acqs[best_ind]
if a < best:
next_x, best = cand_xs[best_ind], a
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 8
Instances Project Name: scikit-optimize/scikit-optimize
Commit Name: b0699b34e2b16cb3abbd22c397077cc6c21ef279
Time: 2016-11-30
Author: mks542@nyu.edu
File Name: skopt/optimizer/base.py
Class Name:
Method Name: base_minimize
Project Name: vitchyr/rlkit
Commit Name: 9bdbb11cf27060e7847a87dcdf691dd6b96ce6df
Time: 2020-08-09
Author: 38036768+YangRui2015@users.noreply.github.com
File Name: rlkit/data_management/obs_dict_replay_buffer.py
Class Name: ObsDictRelabelingBuffer
Method Name: random_batch
Project Name: scikit-learn-contrib/categorical-encoding
Commit Name: fc4917ae8a7320fc9a258b50d82a177ed2124a91
Time: 2018-12-21
Author: jcastaldo08@gmail.com
File Name: category_encoders/basen.py
Class Name: BaseNEncoder
Method Name: fit_base_n_encoding