ca907342507c1139696f542de0a3351d7a382eee,reinforcement_learning/actor_critic.py,,,#,86
Before Change
running_reward = 10
for i_episode in count(1):
state = env.reset()
for t in range(10000): // Don"t infinite loop while learning
action = select_action(state)
state, reward, done, _ = env.step(action)
if args.render:
env.render()
model.rewards.append(reward)
if done:
break
running_reward = running_reward * 0.99 + t * 0.01
finish_episode()
if i_episode % args.log_interval == 0:
print("Episode {}\tLast length: {:5d}\tAverage length: {:.2f}".format(
i_episode, t, running_reward))
if running_reward > env.spec.reward_threshold:
print("Solved! Running reward is now {} and "
"the last episode runs to {} time steps!".format(running_reward, t))
break
After Change
break
if __name__ == "__main__":
main()
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
Project Name: pytorch/examples
Commit Name: ca907342507c1139696f542de0a3351d7a382eee
Time: 2017-12-04
Author: sgross@fb.com
File Name: reinforcement_learning/actor_critic.py
Class Name:
Method Name:
Project Name: pytorch/examples
Commit Name: ca907342507c1139696f542de0a3351d7a382eee
Time: 2017-12-04
Author: sgross@fb.com
File Name: reinforcement_learning/reinforce.py
Class Name:
Method Name:
Project Name: OpenNMT/OpenNMT-tf
Commit Name: fe92b5e268c4792bb2e3d272c4312b4816d7ec37
Time: 2020-12-10
Author: guillaumekln@users.noreply.github.com
File Name: opennmt/training.py
Class Name: Trainer
Method Name: _steps