288e2868ce5f35a9c8ecf3e3fa913f293adcf7e7,cube/models/vocoder.py,BeeCoder,learn,#BeeCoder#,161

Before Change


                        dy.pickneglogsoftmax(softmax_outputs[ii], disc[mgc_index * self.UPSAMPLE_COUNT + ii]))
                losses.append(dy.esum(frame_losses))

                history = wave[
                          (mgc_index + 1) * self.UPSAMPLE_COUNT - self.HISTORY:(mgc_index + 1) * self.UPSAMPLE_COUNT]

            if len(losses) >= batch_size:
                loss = dy.esum(losses)
                total_loss += loss.value()

After Change


        // wave += np.array(wave, dtype=np.int32)
        // wave += 32768
        wave = wave / 32768
        wave += 1.0
        wave = wave * 65535
        wave = np.clip(np.array(wave, np.int32), 0, 65535)

        // wave = np.array(wave, dtype=np.uint16)
        // from ipdb import set_trace
        // set_trace()
        // print(signal_fft)
        last_proc = 0
        dy.renew_cg()
        total_loss = 0
        losses = []
        cnt = 0
        last_state = None
        last_val = 32768
        for mgc_index in range(len(mgc)):
            curr_proc = int((mgc_index + 1) * 100 / len(mgc))
            if curr_proc % 5 == 0 and curr_proc != last_proc:
                while last_proc < curr_proc:
                    last_proc += 5
                    sys.stdout.write(" " + str(last_proc))
                    sys.stdout.flush()

            if mgc_index < len(mgc) - 1:
                pred_output, softmax_outputs, last_state = self._predict_one(mgc[mgc_index], history=last_val,
                                                                             gs_output=wave[
                                                                                       mgc_index * self.UPSAMPLE_COUNT:mgc_index * self.UPSAMPLE_COUNT +
                                                                                                                       self.UPSAMPLE_COUNT],
                                                                             last_state=last_state)
                frame_losses = []
                for ii in range(len(softmax_outputs)):
                    frame_losses.append(
                        dy.pickneglogsoftmax(softmax_outputs[ii][0],
                                             int(wave[mgc_index * self.UPSAMPLE_COUNT + ii]) / 256))
                    frame_losses.append(
                        dy.pickneglogsoftmax(softmax_outputs[ii][1],
                                             int(wave[mgc_index * self.UPSAMPLE_COUNT + ii]) % 256))

                losses.append(dy.esum(frame_losses))

                last_val = wave[(mgc_index + 1) * self.UPSAMPLE_COUNT - 1]

            if len(losses) >= batch_size:
                loss = dy.esum(losses)
                total_loss += loss.value()
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 6

Instances


Project Name: tiberiu44/TTS-Cube
Commit Name: 288e2868ce5f35a9c8ecf3e3fa913f293adcf7e7
Time: 2018-10-31
Author: boros@adobe.com
File Name: cube/models/vocoder.py
Class Name: BeeCoder
Method Name: learn


Project Name: tiberiu44/TTS-Cube
Commit Name: 288e2868ce5f35a9c8ecf3e3fa913f293adcf7e7
Time: 2018-10-31
Author: boros@adobe.com
File Name: cube/models/vocoder.py
Class Name: BeeCoder
Method Name: learn


Project Name: has2k1/plotnine
Commit Name: e77a2cb4eca82cfa46c132b535091ec5940bf8c5
Time: 2019-12-16
Author: has2k1@gmail.com
File Name: plotnine/scales/scale_xy.py
Class Name: scale_position_discrete
Method Name: map


Project Name: r9y9/wavenet_vocoder
Commit Name: 985496146dd1ebdc3a43ac921de627c6b61b5200
Time: 2019-08-25
Author: zryuichi@gmail.com
File Name: audio.py
Class Name:
Method Name: load_wav