9b95e0f07b60b6a144893dcc506dfaf90db61c95,librosa/feature/utils.py,,stack_memory,#,119

Before Change



    data = np.pad(data, [(0, 0), padding], **kwargs)

    history = np.vstack([np.roll(data, -i * delay, axis=1) for i in range(n_steps)[::-1]])

    // Trim to original width
    if delay > 0:
        history = history[:, :t]

After Change


    if n_steps < 1:
        raise ParameterError("n_steps must be a positive integer")

    if data.ndim > 2:
        raise ParameterError("Input must be at most 2-dimensional. "
                             "Given data.shape={}".format(data.shape))

    if delay == 0:
        raise ParameterError("delay must be a non-zero integer")

    data = np.atleast_2d(data)
    t = data.shape[-1]
    
    if t < 1:
        raise ParameterError("Cannot stack memory when input data has "
                             "no columns. Given data.shape={}".format(data.shape))
    kwargs.setdefault("mode", "constant")

    if kwargs["mode"] == "constant":
        kwargs.setdefault("constant_values", [0])

    // Pad the end with zeros, which will roll to the front below
    if delay > 0:
        padding = (int((n_steps - 1) * delay), 0)
    else:
        padding = (0, int((n_steps - 1) * -delay))

    data = np.pad(data, [(0, 0), padding], **kwargs)

    // Construct the shape of the target array
    shape = list(data.shape)
    shape[0] = shape[0] * n_steps
    shape[1] = t
    shape = tuple(shape)

    // Construct the output array to match layout and dtype of input
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 8

Instances


Project Name: librosa/librosa
Commit Name: 9b95e0f07b60b6a144893dcc506dfaf90db61c95
Time: 2020-05-18
Author: bmcfee@users.noreply.github.com
File Name: librosa/feature/utils.py
Class Name:
Method Name: stack_memory


Project Name: pyinstaller/pyinstaller
Commit Name: e80458a7207562957d25950b1e242ff128897c30
Time: 2020-04-03
Author: 15150702+jonnyhsu@users.noreply.github.com
File Name: PyInstaller/hooks/hook-shapely.py
Class Name:
Method Name:


Project Name: scikit-optimize/scikit-optimize
Commit Name: 2e0effe79edeaccb70906d6a68310333dcc13cd6
Time: 2016-06-16
Author: betatim@gmail.com
File Name: skopt/learning/gbrt.py
Class Name: GradientBoostingQuantileRegressor
Method Name: fit