be65ce986a45bf2f35b5494db3fa6e993b905aeb,deepctr/models/deepfm.py,,DeepFM,#,20
Before Change
linear_logit = get_linear_logit(linear_emb_list, dense_input_dict, l2_reg_linear)
fm_input = concat_fun(deep_emb_list, axis=1)
deep_input = tf.keras.layers.Flatten()(fm_input)
fm_out = FM()(fm_input)
deep_out = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout,
dnn_use_bn, seed)(deep_input)
deep_logit = tf.keras.layers.Dense(
After Change
inputs_list = list(features.values())
sparse_embedding_list, dense_value_list = input_from_feature_columns(features,dnn_feature_columns,
embedding_size,
l2_reg_embedding,init_std,
seed)
linear_logit = get_linear_logit(features, linear_feature_columns, l2_reg=l2_reg_linear, init_std=init_std,
seed=seed, prefix="linear")
fm_input = concat_fun(sparse_embedding_list, axis=1)
fm_logit = FM()(fm_input)
dnn_input = combined_dnn_input(sparse_embedding_list,dense_value_list)
dnn_out = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout,
dnn_use_bn, seed)(dnn_input)
dnn_logit = tf.keras.layers.Dense(
1, use_bias=False, activation=None)(dnn_out)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
Project Name: shenweichen/DeepCTR
Commit Name: be65ce986a45bf2f35b5494db3fa6e993b905aeb
Time: 2019-06-30
Author: wcshen1994@163.com
File Name: deepctr/models/deepfm.py
Class Name:
Method Name: DeepFM
Project Name: shenweichen/DeepCTR
Commit Name: be65ce986a45bf2f35b5494db3fa6e993b905aeb
Time: 2019-06-30
Author: wcshen1994@163.com
File Name: deepctr/models/autoint.py
Class Name:
Method Name: AutoInt
Project Name: shenweichen/DeepCTR
Commit Name: be65ce986a45bf2f35b5494db3fa6e993b905aeb
Time: 2019-06-30
Author: wcshen1994@163.com
File Name: deepctr/models/fnn.py
Class Name:
Method Name: FNN
Project Name: shenweichen/DeepCTR
Commit Name: be65ce986a45bf2f35b5494db3fa6e993b905aeb
Time: 2019-06-30
Author: wcshen1994@163.com
File Name: deepctr/models/deepfm.py
Class Name:
Method Name: DeepFM