be65ce986a45bf2f35b5494db3fa6e993b905aeb,deepctr/models/fnn.py,,FNN,#,17
Before Change
linear_logit = get_linear_logit(linear_emb_list, dense_input_dict, l2_reg_linear)
deep_input = tf.keras.layers.Flatten()(concat_fun(deep_emb_list))
deep_out = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn,
dnn_dropout, False, seed)(deep_input)
deep_logit = tf.keras.layers.Dense(
1, use_bias=False, activation=None)(deep_out)
After Change
:param task: str, ``"binary"`` for binary logloss or ``"regression"`` for regression loss
:return: A Keras model instance.
features = build_input_features(linear_feature_columns + dnn_feature_columns)
inputs_list = list(features.values())
sparse_embedding_list, dense_value_list = input_from_feature_columns(features,dnn_feature_columns,
embedding_size,
l2_reg_embedding,init_std,
seed)
linear_logit = get_linear_logit(features, linear_feature_columns, l2_reg=l2_reg_linear, init_std=init_std,
seed=seed, prefix="linear")
dnn_input = combined_dnn_input(sparse_embedding_list,dense_value_list)
deep_out = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn,
dnn_dropout, False, seed)(dnn_input)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 23
Instances
Project Name: shenweichen/DeepCTR
Commit Name: be65ce986a45bf2f35b5494db3fa6e993b905aeb
Time: 2019-06-30
Author: wcshen1994@163.com
File Name: deepctr/models/fnn.py
Class Name:
Method Name: FNN
Project Name: shenweichen/DeepCTR
Commit Name: be65ce986a45bf2f35b5494db3fa6e993b905aeb
Time: 2019-06-30
Author: wcshen1994@163.com
File Name: deepctr/models/deepfm.py
Class Name:
Method Name: DeepFM
Project Name: shenweichen/DeepCTR
Commit Name: be65ce986a45bf2f35b5494db3fa6e993b905aeb
Time: 2019-06-30
Author: wcshen1994@163.com
File Name: deepctr/models/fnn.py
Class Name:
Method Name: FNN
Project Name: shenweichen/DeepCTR
Commit Name: be65ce986a45bf2f35b5494db3fa6e993b905aeb
Time: 2019-06-30
Author: wcshen1994@163.com
File Name: deepctr/models/xdeepfm.py
Class Name:
Method Name: xDeepFM